Leakage-Resilient Circuits without Computational Assumptions
نویسندگان
چکیده
Physical cryptographic devices inadvertently leak information through numerous side-channels. Such leakage is exploited by socalled side-channel attacks, which often allow for a complete security breache. A recent trend in cryptography is to propose formal models to incorporate leakage into the model and to construct schemes that are provably secure within them. We design a general compiler that transforms any cryptographic scheme, e.g., a block-cipher, into a functionally equivalent scheme which is resilient to any continual leakage provided that the following three requirements are satisfied: (i) in each observation the leakage is bounded, (ii) different parts of the computation leak independently, and (iii) the randomness that is used for certain operations comes from a simple (nonuniform) distribution. In contrast to earlier work on leakage resilient circuit compilers, which relied on computational assumptions, our results are purely information-theoretic. In particular, we do not make use of public key encryption, which was required in all previous works.
منابع مشابه
Protecting Circuits from Computationally-Bounded Leakage
Physical computational devices leak side-channel information that may, and often does, reveal secret internal states. We present a general transformation that compiles any circuit into a device that maintains secrecy even in the presence of well-defined classes of side-channel leakage. Our construction requires only a minimal leak-proof component: one that draws random elements from a simple di...
متن کاملLeakage Resilient Fully Homomorphic Encryption
We construct the first leakage resilient variants of fully homomorphic encryption (FHE) schemes. Our leakage model is bounded adaptive leakage resilience. We first construct a leakageresilient leveled FHE scheme, meaning the scheme is both leakage resilient and homomorphic for all circuits of depth less than some pre-established maximum set at the time of key generation. We do so by applying id...
متن کاملEfficient Refreshing Protocol for Leakage-Resilient Storage Based on the Inner-Product Extractor
A recent trend in cryptography is to protect data and computation against various side-channel attacks. Dziembowski and Faust (TCC 2012) have proposed a general way to protect arbitrary circuits against any continual leakage assuming that: (i) the memory is divided into the parts, which leaks independently (ii) the leakage in each observation is bounded (iii) the circuit has an access to a leak...
متن کاملMaking the Best of a Leaky Situation: Zero-Knowledge PCPs from Leakage-Resilient Circuits
A Probabilistically Checkable Proof (PCP) allows a randomized verifier, with oracle access to a purported proof, to probabilistically verify an input statement of the form “x ∈ L” by querying only few bits of the proof. A zero-knowledge PCP (ZKPCP) is a PCP with the additional guarantee that the view of any verifier querying a bounded number of proof bits can be efficiently simulated given the ...
متن کاملCircuit Compilers with O(1/\log (n)) Leakage Rate
The goal of leakage-resilient cryptography is to construct cryptographic algorithms that are secure even if the devices on which they are implemented leak information to the adversary. One of the main parameters for designing leakage resilient constructions is the leakage rate, i.e., a proportion between the amount of leaked information and the complexity of the computation carried out by the c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012